
Exploring Security and Privacy Risks of SoA

Solutions Deployed on the Cloud

Abdullah Abuhussein, Harkeerat Bedi, Sajjan Shiva

Department of Computer Science

The University of Memphis

Memphis, USA

{bhussein, hsbedi, sshiva}@memphis.edu

Abstract— It has been widely accepted that service oriented

architecture (SoA), has been a promising approach for business

development and growth. SoA principles (also known as SoA

qualities) attempt to guide development, maintenance, and usage

of the SoA. These principles provide benefits like: ease of reuse,

service automation, and lowering integration costs. However,

they can also lead to security issues. These issues are augmented

especially when SoAs are deployed in multi-tenancy third party

clouds. SoA has benefited from the existence of cloud computing

(CC) as it provided SoA with a flexible deployment medium.

However, the advantageous collaboration of SoAs and CC has led

to a larger set of privacy and security issues (e.g. compliance

issues, QoS issues). Additionally, we observe newer kinds of

security and privacy risks that are now required to be monitored

and mitigated. In this paper we highlight the security and

privacy challenges associated with the utilization of the SoA

principles on cloud based solutions. We identify the origin and

severity of these issues followed by several recommendations to

guide the utilization of SoA principles in off-premise clouds.

Keywords— service oriented architecture, cloud computing,

security, privacy.

I. INTRODUCTION

Service oriented architecture (SoA) has provided the
software development industry with flexibility and capabilities
like bridging business and IT, lower cost by implanting
reusability and providing autonomy in software services. SoA
is defined as a set of architectural tenets for building
autonomous yet interoperable systems [1]. SoA defines eight
principles that guide its development, maintenance, and usage.
These principles are: abstraction, autonomy, composability,
discoverability, formal contract, loose coupling, reusability and
statelessness [2].

SoA principles offer a number of advantages (e.g.
reusability, reduce integration and maintenance costs) [3] and
therefore they can also be represented as qualities of SoA. SoA
principles played a significant role in the adoption of the SoA
paradigm in the last decade [4]. The tightly coupled nature
among services in systems preoccupied developers’ minds. The
SoA principles alleviated these issues and enabled the software
developers to produce software components that are reusable,
autonomous and customizable.

In some cases, SoA principles like abstraction and
independency of services help to reduce services exposure to

the outside world and therefore reduce security risks. However,
SoA security in general remains an issue due to the medium
they are deployed on and delivered through.

Deployment and delivery of SoA can be performed using
several methods. At present, cloud computing (CC) has
become the most prominent means of SoA deployment and
delivery. CC provides benefits like resiliency, elasticity and
reliability but also raises several security and privacy risks [5].
The combination of SoA and CC together produces a larger set
of security and privacy risks. CSA Notorious 9 of 2013 stated
that Clouds that share PaaS, SaaS, and IaaS are more
vulnerable [6]. This is generally the case when deploying SoA
solutions on public clouds. .

The future of SoA is tightly interlinked with CC due to the
use of Internet, changing nature of the customers, and the
impact of social networking (e.g. sudden high consumer
demand/traffic that was not an issue before). To handle such
situations that are very common now, SoA needs CC to cater
the needs of this newer generation of consumers. Therefore,
SoA benefits from CC features like agility, scalability, and
reliability to operate and conveniently perform upgrades to
meet the consumer’s needs.

The current research is primarily geared towards finding
the security and privacy issues of SoA [7]. Researchers in [8]
and [9] have shown some of the security challenges in
deploying SoA in the cloud. In this work we study the
relationship between the utilization of the SoA principles and
the emersion of security and privacy issues . We also show the
origin of these security and privacy issues then provide
recommendations on how to secure the deployment. SoA is
widely practiced today. Now, most companies are focusing on
building services that are independent, can be discovered and
requested automatically by consumers, and are able to monitor
and manage themselves. However, this requires an extensive
effort towards balancing the utilization level of SoA principles,
while minimizing exposure to security and privacy risks.

Section 2 explores SoA deployments over the past decade.
We will also go over current different form of delivering SoA.
In section 3 we illustrate how utilizing SoA principles in the
cloud may lead to potential security and privacy vulnerabilities.
We show the severity of such risks and describe how they are
originated. We also present various recommendations to

overcome these risks. Section 4 provides our observations on
the presented problem, proposed solution and future work.

II. SOA DEPLOYMENT AND DELIVERY

Traditionally, SoA solutions like Customer relationship
management (CRM) , Enterprise resource planning (ERP),
payroll, etc. were deployed on private machines that lie within
the premises of the end user’s organization (on-premises) or
deployed within the SoA provider’s organization (off-
premises) and accessed by end users through the Internet.
Emergence of CC served to meet developers’ increasing
demands of infrastructure for their SoA solutions. With the
advent of CC, the entities responsible for development of SoA
and those of infrastructure became separated. This leads to
change to the nature, severity and/or existence of SoA
vulnerabilities. It also leads newer kinds of issues and risks that
were not present earlier (e.g. governance and compliance
issues, etc.) [5].

Fig. 1. SoA deployed on off-premises versus on-premises cloud computing

Fig. 1 shows the two possible cases of deploying SoA on
the cloud. On the right, SoA is deployed on a cloud model that
is on-premise. Services are hosted by the organization’s
infrastructure and the infrastructure is provisioned and
managed by the organization itself. Since the entity responsible
for the development of SoA and the infrastructure are the same,
the risks are limited.

The case on the left shows off-premise cloud computing
infrastructure being used to host the SoA services.
Infrastructure is provisioned and managed by the CC service
provider. In this case, features like auto-scalability and multi-
tenancy are offered to provide SoA developers with as much
infrastructure as they need at low costs. However, SoA
developers share the infrastructure with other tenants. Also,
services might demand more resources and scale up on more
VMs on the same physical machine or distant machines on
different regions. Moreover, CC service brokers might

recommend a different service provider every time additional
infrastructure is requested. These scenarios lead to new kinds
of security issues and thus risks that were not present before.

CC providers do offer isolated hardware for interested
consumers. This in turn would overcome the multi-tenancy
drawbacks although at higher prices [9]. Nevertheless, denial
of service (DoS) attacks, which are the CC’s fifth top threat in
2013 [10], are a serious concern in isolated hardware [11].

III. RISKS OF CC ON SOA ORIENTED SOLUTIONS AND

RECOMMENDATIONS

Despite the benefits that SoA principles add to the
traditional software development life cycle, they bring new
challenges. Some of these challenges are security and privacy
issues that take place due to the technologies used in SoA
based service development and operation. XML is the core of
SoA and is not inherently secure. SOAP (Simple Object
Access Protocol), WSDL (Web Services Description
Language), and UDDI (Universal Description Discovery and
Integration) are all based on XML. A well-known XML
exploit is the XML rewriting attack. Although WS-Security
[12], WS-Policy [13] and other standards aim to secure the
XML based application and avoid these attacks, the national
vulnerability database [14] showed 14 SOAP vulnerabilities,
and 4 WSDL related ones in 2013.

Beside the security problems of SoA [15], the fact that CC
is becoming one of the most prominent means of SoA
deployment worsened matters. Table 1 shows the (8) SoA
principles in the first column, application area in column two,
alongside the technologies required to foster each one of
principles in column three. The forth column highlights how
the deployment of SoA in an off-Premise CC can change the
nature of the SoA vulnerabilities and the severity of security
issues and risks. In the same table, we map these risks to the
CSA notorious nine cloud attacks observed in 2013.

Technically, the application of the 8 service-oriented-
architecture principles can be segregated into two categories
based on the part of SoA that they are utilized in. The first
category is for the principles that can be utilized in service
contract and registry like: abstraction, discoverability, and
formal contract. Other SoA principles like: (composability,
Autonomy, loose coupling, reusability, and statelessness) can
be utilized in services themselves, which is the second
category. We need categorization to enable exploring technical
security and privacy issues. For instance, WSDL and UDDI
together with SOAP are standards in service registry [16].
Knowing these standards we can look for security breaches that
can be exploited using them. Matters can be even worse in an
exposed off-premise cloud computing infrastructure.

Below we explain the SoA principles in brief, discuss the
security and privacy issues related to the utilization of each
principle and suggest several security recommendations.

On-premise Cloud

Service owners/users
 Inside organization

Service users

Services Deployed on Single Tenant
Infrastructure

Services

Off-premise Cloud
Services Deployed on Multi-Tenant Auto

Scaling Infrastructure

Cloud
provider

A

Cloud
provider

B

Services Service
s

Other
Tenants on
Infrastructure

TABLE I. SECURITY ISSUES RELATED TO THE UTILIZATION OF EACH

SOA PRINCIPLE IN OFF-PREMISE CLOUD

SoA Applicable

to

Vulnera-

ble

Tech

Risks due to CC

[5]

CSA Notorious 9

Threats [6]

A
b

st
ra

ct
io

n

Service
Contract

SOAP
UDDI

WSDL

XML
HTTP

1. Exposure

2. Redundancy

and integrity
issues

3. Access control

4. Trust

1.0 Data Breaches

4.0 Insecure

Interfaces and APIs
3.0 Account or

Service Traffic

Hijacking

D
is

co
v
er

ab
il

it
y

Service
contract and

Service

Registry

SOAP

UDDI

WSDL
XML

HTTP

1. Exposure to

cloud risks
2. Authentication

and access

control

1.0 Data Breaches

4.0 Insecure
Interfaces and APIs

3.0 Account or

Service Traffic
Hijacking

C
o

m
p
o

sa
b

il
it

y

Services

TCP
communi-

cation

XML

1. Lack of
standards

2. QoS.

3. Availability
4.Trust

3. Compliance

4. Governance

1.0 Data Breaches

4.0 Insecure

Interfaces and APIs
3.0 Account or

Service Traffic

Hijacking
5.0 Denial of Service

6.0 Malicious Insiders

A
u

to
n
o

m
y

Services

TCP

communi-

cation
XML

1. Lack of

standards and
safe patterns

2. Exposure to

cloud risks

1.0 Data Breaches
4.0 Insecure

Interfaces and APIs

3.0 Account or
Service Traffic

Hijacking

9.0 Shared
Technology

Vulnerabilities

F
o

rm
al

co
n

tr
ac

t

Service

Contract

SOAP

UDDI

WSDL
XML

HTTP

1. Trust

2. QoS

3. Authentication
and access

control

6.0 Malicious Insiders

5.0 Denial of Service

L
o
o

se

co
u

p
li

n
g

Services

TCP

communi-

cation
XML

1.QoS

2.Exposure to
cloud risks

3. Data

Interception

5.0 Denial of Service

4.0 Insecure
Interfaces and APIs

1.0 Top Threat: Data

Breaches

R
eu

sa
b

il
it

y

Services

TCP

communi-

cation
XML

1. Compliance

2. QoS

3. Exposure to

cloud risks

4. Authencation

and access
control

6.0 Malicious Insiders

5.0 Denial of Service

S
ta

te
le

ss
n
es

s

Services

TCP

communi-
cation

XML

1.Exposure to

cloud risks
2.Compliance

3.Trust

1.0 Data Breaches

4.0 Insecure

Interfaces and APIs
3.0 Account or

Service Traffic

Hijacking

A. Abstraction

This principle of SoA aims to hide the logic behind services
from the outside world, while providing descriptions in the
service contract. To utilize service abstraction service
developers need to categorize service meta information into (1)
Functional (2) Technology (3) Programmatic and (4) Quality
of service categories. Service meta information is then used to

create service contracts and service registry. After that, an
access control procedure is applied to limit open access to
service owners only and give controlled access to others
including interested consumers.

Less abstraction indicates more information about the logic
of the service and therefore more exposure and more
vulnerability. However, over utilization of abstraction indicates
over-hiding service logic and technology information and
therefore, limits the reusability of the service which leads to
creating similar services and raises redundancy and integrity
issues.

Another possible problem is access control. Traditionally,
service owners have access to all parts of the service, like
design specifications, source code, etc. However, the off-
premise CC nature exposes the SoA and increases the
possibility of account hijacking. For example, an attacker who
is successfully able to hijack the account of a service owner
will have access to all the parts of a service.

Also as a result of abstraction, service consumers and
program designers will not be aware of composite services.
Due to this, service consumers won’t know what is wrong with
the service once a composing part of the whole service goes
down as we will see later in the composability principle.

Due to the exposed nature of cloud computing these issues
will have a bigger chance to occur. Thus it is recommend that
service developers and implementers balance the amount of
abstraction and monitor services for risks appropriately. One
should look for CC with good access management to mitigate
the risk of account hijacking.

B. Discoverability

Service registry is a central repository of service meta data
that is hosted on off-premise cloud. Service consumers access
service registry to find desired functionalities. That’s how a
consumer discovers a desired service and then retrieves the
service contract. Then the service will be ready for usage.

The discoverability principle enforces that services have
communicative meta-data so that they can be efficiently
discovered and interpreted. One of the ways this principle is
implemented is through using the Web Proxy Auto-Discovery
Protocol (WPAD). Browsers in an organization are required to
be supplied with the same proxy policies. These polices are
created and maintained by using a configuration file based on
the Proxy auto-config (PAC) standard. WPAD is used to
discover the URL of this configuration file so that proxy
policies on all browsers in an organization can be set
concurrently.

With SoA being implemented on the cloud, we are adding
more exposure to these vulnerable PAC files. Previously an
attacker had to be within a company’s network to attack these
PAC files. Now due to the ubiquitous nature of the cloud, this
is not the case. The above two problems become difficult when
the service broker comes into picture as this adds another layer
of communication exposed to cloud vulnerabilities. In 2012 a
summary by the national vulnerability database shows WPAD)
functionality in Microsoft .NET Framework 2.0 SP2. WPAD
was not validating configuration data that is returned during

acquisition of proxy settings. This vulnerability may allow
remote attackers to execute arbitrary JavaScript code.

In 2013, the same database reported a Cross-site scripting
vulnerability in the UDDI administrative console in IBM
WebSphere application server. UDDI is the core of the registry
along with WSDL and SOAP [14].

Thus it is recommended to use some form of authentication
among services, or between services and the service browser.
Also, balance the amount of discoverability, and monitor the
services. Another recommendation can be to enable automatic
updating for your services to benefit from security frequent
patches provided by SoA vendors.

C. Composability

This principle encourages that services become effective
participants for composition. It promotes composing new
solutions by reusing existing services. However, lack of
standards in how to securely and safely compose a service
from other services on a cloud is a possible security issue due
to the multi-tenancy nature of the cloud. As mentioned before,
service contracts hide service composability details so;
consumers can never tell whether the service is a standalone
service or composed of others.

Availability of the composing services will affect the
availability of the parent service. Moreover, quality of the
service (QoS) depends on the QoS of the CC infrastructure.

Also, QoS of a composed service depends on the QoS of
the sub-services and the infrastructure they are deployed on.
Because of the multi region infrastructure of the cloud,
compliance and distributed ownership security issues may also
apply if the regulations in the countries of the composing sub-
services do not match.

Moreover, too composability denotes more transit time due
to communication among composing services. Attackers can
steal or modify information if not protected while in transit.
Again, the exposed nature of the off-premise cloud computing
may worsen matters [17].

Therefore, it is recommended to follow safe service
composition patterns when composing solutions [8]. It is also
essential to review SLA of the underlying CC infrastructure
and make sure that hosting countries have no problem with the
content and the function of the service. Auditing the underlying
CC service for hypervisor security is another recommendation.
It helps to overcome multi-tenancy security issues. Encryption
and digital signature of data on transit must be considered too
in order to secure data in transit. Another recommendation is to
balance the amount of composability, and monitor composed
services and participant services.

D. Autonomy

This principle of SoA aims to build services with self-
control over the logic they contain. When services are made
autonomous, they become independent of the underlying
technologies, i.e., these services will be resilient to the issues in
these technologies. But at the same time, since they can be
implemented on more diverse platforms, we are also increasing
their exposure to security flaws of these platforms. This will

increase the possibility of compromising services due to
variations on the underlying technologies.

Service autonomy implies greater emphasis on explicit
management of trust between applications to avoid malicious
modification and avoid service integrity issues especially due
to the nature of public clouds [18].

The Autonomous nature of services implies that services
communicate to maintain control over the resources and to
coordinate with other components of the SoA. A significant
increase in the messaging must occur as service autonomy
increase which will also increase exposure to vulnerabilities on
off-premise CC. The greater the number of resources, that are
accessible for attack, the greater the attack surface and
therefore, the more insecure the software environment [19].

The recommendations to overcome these issues are to do a
thorough assessment of whether or not it is necessary to
increase autonomy at the expense of exposure. It is also
important to verify the security practices that can be applied to
the underlying technologies. A strong input validation is
required to verify input from other applications. Finally, apply
WS-Security to achieve trust among autonomous services and
applications.

E. Formal contract

When a service is implemented as a Web service, the
service contract is normally comprised of a WSDL definition,
multiple XML schema, policy definitions, as well as
supplementary documents, such as an SLA. This principle
enables a standard design of services in terms of policies,
WSDL, and XML Schema within the service inventory.

 As aforementioned, the formal contract principle is utilized
on service contracts. So, it is also subject to WSDL, XML, and
SOAP security issues.

In cases where SLA parameter deals with response time
and there is a delay, the service consumer would not know
whether the problem lies with the service or the CC
infrastructure. The service consumer will have to trust the SoA
provider for the promised QoS. Moreover, the QoS could get
worse if the service is a composed service [20].

Standardization of services within the inventory might give
a pattern of how these services are built. This might lead to
unveil information about the logic, and/or the technology used
to build other services if one service is attacked.

To safely and securely apply this principle we present the
following recommendations. The first one is to avoid
automated tools when creating contracts as it might lead to
inaccuracies. Verify the created contracts to make sure that the
underlying infrastructure provides the promised QoS by the
SLA. A good access control and authentication system is also
required here to avoid illegitimate communication.

F. Loose coupling

Loose coupling enforces that services are built in such a
manner that they are decoupled from their surrounding
environment. Services must be designed in such a way that it is
not tightly coupled to other services or resource. Decoupling a
service from its environment has several advantages (e.g.

Hiding service implementation from attackers) however; it
increases the message exchanges between the service and the
environment. Deploying services on CC makes it worse since
the messages are transmitted through the Internet which adds
latency to response time and reduces throughput. Also,
messages passing between two services or between a service
and the service container can be intercepted as mentioned
before [21].

Thus, it is recommended to use secure communication by
applying encryption on transmitted data. Another
recommendation is to use compression techniques to reduce
the bandwidth and latency overhead.

G. Reusability

Services need to be as generic as possible so that they are
of interest to multiple service consumers, however, larger
granularity may lead to larger incompatibilities that might in
turn lead to security issues. To utilize reusability, developers
need to produce solution in forms of services with the intention
of promoting reuse. Compliance issues can rise by producing
reusable SoA services [22]. For example, rules and regulations
in different countries can limit the extensibility of use of such
reusable services. Another issue in enforcing reusability on off-
premise deployed SoA is the difference in the CC
infrastructure configurations. Different CC providers have
difference configurations, thus QoS variance is expected. Also,
changes to standards or upgrades applied to infrastructure may
have a large impact on the security of services.

Therefore, it is recommended that SoA developers test
services on various infrastructure configurations before
releasing them to public. As suggested previously, a thorough
walkthrough over the rules and regulation of countries hosing
the CC infrastructure should be performed. It is also important
to verify that the service data is lawful in all stages (input,
process, output, and storage).

H. Statelessness

This principle of SoA promotes minimizing resource
consumption by services. This is achieved by deferring the
management of state information when necessary. In other
words developers should try to avoid service consumption of
resources so that services can handle more requests in a reliable
manner. Also saving state in an external component requires
additional infrastructure. On the cloud, since the external
component can be placed anywhere, it becomes necessary to
ensure that the latency limits are met. While communicating to
and from different clouds, we are exposing the state of the
service and increasing the message exchange between the
service and its infrastructure.

Thus, similar to the recommendations provided for loose
coupling, it is suggested to use secure communication by
applying encryption. Also it is recommended to use
compression techniques to reduce the bandwidth and latency
overhead and thus, increase service availability.

IV. CONCLUSION

Service oriented architectures (SoA) and cloud computing
(CC) are accelerating to provide consumers with reliable,
resilient, and efficient solutions. Increasing the utilization of
SoA principles indicates adding more qualities to applications
however, it also exposes developed services to newer
vulnerabilities. These vulnerabilities can occur due to the broad
attack surface of these SoA solutions. In this paper we showed
the importance of balancing and monitoring the services that
utilize the SoA principles in off-premise cloud computing. We
presented several security and privacy risks (challenges). We
also provided recommendations that developers of SoA in
public cloud computing need to consider to overcome these
risks.

In this work, we have demonstrated how enforcing the
eight principles of SoA can add risks when deployed on off-
premise CC environments. Porting SoA to the cloud will not
have only benefits, but it will also add some security risks that
developers need to consider. Further investigation is needed on
additional security risks and safe SoA patterns to strengthen the
SoA industry. A common issue when developing SoA is the
overhead of utilizing these principles. In addition, we have
seen other security and privacy issues like exposure, QoS,
trust, compliance, data interception, and availability. There are
general recommendations [23] when porting SoA to an off-
premise CC like (1) look for secure CC services which exhibit
adequate security attributes [24, 25] to overcome the most
possible security issues. (2) Test services on different
infrastructures and different scenarios before releasing them to
be used by public and (3) encourage SoA developers to find
and publish safe SoA development patterns so that others can
benefit from them.

We are now investigating the factors that affect the over-
utilization of the SoA principles. We also intend to identify
safe SoA utilization patterns that can help others in overcoming
the security risks presented in the paper.

REFERENCES

[1] Jammes, François, Antoine Mensch, and Harm Smit. "Service-oriented
device communications using the devices profile for web services." In
Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing, pp. 1-8. ACM, 2005.

[2] Thomas Erl: SOA Design Patterns, Prentice Hall PTR; 1 edition (2009)

[3] Bean, J. :SOA and web services interface design: principles, techniques,
and standards. Morgan Kaufmann. (2009)

[4] Inaganti, S., & Aravamudan, S. (2007). SOA maturity model. BPTrends,
April.

[5] NITS, "Guidelines on Security and Privacy in Public Cloud
Computing", http://csrc.nist.gov/publications/nistpubs/800-144/SP800-
144. pdf

[6] The Notorious Nine Cloud Computing Top Threats in 2013,
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_
Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdF

[7] F5, SOA: Challenges and Solutions- White paper,
http://www.f5.com/pdf/white-papers/soa-challenges-solutions-wp.pdf

[8] Wei, Y., & Blake, M.. : Service-oriented computing and cloud
computing: Challenges and opportunities. Internet Computing, IEEE,
14(6), 72-75. (2010)

[9] Pal, P., Atighetchi, M., Loyall, J., Gronosky, A., Payne, C., & Hillman,
R. : Advanced Protected Services-A Concept Paper on Survivable
Service-Oriented Systems. In Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops (ISORCW), 2010 13th IEEE
International Symposium on (pp. 158-165). IEEE. (2010, May)

[10] Ristenpart, Thomas, et al. "Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds." Proceedings of the
16th ACM conference on Computer and communications security.
ACM, 2009.

[11] Amazon Web Services, EC2: http://aws.amazon.com/ec2/faqs/

[12] WSS: http://www.oasis-open.org/wss/

[13] Web Services Policy Framework (WS-Policy):
http://www.ibm.com/developerworks/library/specification/ws-polfram

[14] National Vulnerability Database: http://nvd.nist.gov/

[15] Phan, C. (2007, October). Service oriented architecture (soa)-security
challenges and mitigation strategies. In Military Communications
Conference, 2007. MILCOM 2007. IEEE (pp. 1-7). IEEE.

[16] García-González, Juan Pablo, Verónica Gacitúa-Décar, and Claus Pahl.
"Service registry: A key piece for enhancing reuse in SOA." (2010).

[17] Venkatasubramanian, Nalini. "Safe'composability'of middleware
services." Communications of the ACM 45, no. 6 (2002): 49-52.

[18] Cabrera, Luis Felipe, Christopher Kurt, and Don Box. "An introduction
to the web services architecture and its specifications." Microsoft,
Microsoft Technical Article, Oct (2004).

[19] Manadhata, Pratyusa K., Kamie M. C. Tan, Roy A. Maxion, and
Jeannette M. Wing. “ An Approach to Measuring a System’s Attack
Surface.” CMU Technical Report CMU-CS-07-146, August 2007.

[20] Bianco, P., Lewis, G. A., & Merson, P.. Service Level Agreements In
Service-Oriented Architecture Environments (No. Cmu/Sei-2008-Tn-
021). Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.
(2008)

[21] Joshi, Rajive. “ Data-Oriented Architecture: A Loosely Coupled Real-
Time SOA.” Real-Time Innovations, Inc., August 2007.

[22] Is SOA Being Pushed Beyond Its Limits? , from:
http://msdn.microsoft.com/en-us/architecture/aa699422.aspx

[23] Microsoft: Security Fundamentals for Web Services,
http://msdn.microsoft.com/en-
us/library/ff648318.aspx#WebServicesSecurityPrinciples

[24] Abuhussein, Abdullah, Harkeerat Bedi, and Sajjan Shiva. "Evaluating
security and privacy in cloud computing services: A Stakeholder's
perspective." Internet Technology And Secured Transactions, 2012
International Conferece For. IEEE, (2012)

[25] Softwareag.com. “ Best Practices for SOA Governance User Survey.”
Software AG, Summer 2008.

