
Runtime Monitors to Detect and Prevent Union Query based SQL Injection 

Attacks 
 

 

Ramya Dharam
1
 and Sajjan. G. Shiva

2
 

1
Department of Computer Science, University of Memphis, Memphis, TN, USA 

2
Department of Computer Science, University of Memphis, Memphis, TN, USA 

 

 

Abstract 
 

Web applications are increasingly used in recent 

years to provide online services such as banking, 

shopping, social networking, etc. These applications 

operate with sensitive user information and hence 

there is a high need for assuring their confidentiality, 

integrity, and availability. Existing pre-deployment 

testing techniques, tools, and methodologies do not 

assure complete analysis, execution and testing of all 

possible behaviors of the software. This causes the 

software to sometimes behave differently than what it 

was designed for during its post-deployment. Such a 

deviation in the system’s behavior, also termed as 

“Software Anomaly,” is mostly due to external attacks 

such as Path Traversal Attacks, SQL Injection Attacks, 

etc., that in turn affect confidential user information 

stored in the application.  In this paper, we present 

and evaluate a framework called Runtime Monitoring 

Framework to handle union query based SQL Injection 

Attacks.  

 

Keywords: Runtime Monitors, Union Queries, SQL 

Injection Attacks, Data-flow Testing, Basis-path 

Testing.  

 

1. Introduction 
 

Database-driven web applications have been widely 

used by organizations to provide a broad range of 

services to their users. These applications contain 

database at their back-end to store confidential user 

data, like financial, medical, and personal information 

records, etc., that makes web applications an ideal 

target for attacks. SQL Injection Attacks (SQLIAs) 

have been identified as one of the major security 

threats to web applications [1]. They give attackers 

unauthorized access to the underlying database and 

also the rights to retrieve, modify and delete valuable 

user information stored in the database resulting in 

security violations, identity theft, etc.  

 

SQLIAs occur when data provided by an external user 

is included directly in a SQL query and is not properly 

validated. Inadequate input validation within an 

application has been identified as one of the major 

cause for SQLIAs. Implementing input validation 

routines can serve as a first level of defense against 

SQLIAs, but they cannot defend against sophisticated 

attack techniques that inject malicious inputs into SQL 

queries [2, 3]. A variety of programming practice 

guidelines and web application security testing tools 

and scanners have also been proposed by the research 

community to detect and prevent SQLIAs. Tools such 

as firewalls and Intrusion Detection Systems (IDSs) are 

ineffective against SQLIAs, because ports which are 

open in firewalls for regular web traffic in the 

application level are used to perform SQLIAs [4]. In 

spite of implementing the described detective and 

preventive techniques, attackers are still able to 

successfully perform SQLIAs on web applications and 

gain unauthorized access to the confidential user 

information. 

 

In this paper, we introduce a framework called Runtime 

Monitoring Framework to develop runtime monitors. 

These monitors perform post-deployment monitoring 

of the application to detect and prevent union query 

based SQLIAs. The framework introduced in this paper 

is an extension of our framework proposed in [5] to 

handle tautology based SQLIAs. Initially, the 

framework uses two pre-deployment testing techniques 

i.e. basis-path and data-flow testing techniques to help 

in the development of runtime monitors for all the 

identified legal/valid execution paths. Then, monitors 

are integrated into the respective module of the 

application to perform runtime monitoring of the 

application during its pos-deployment for the identified 

legal/valid execution paths. Any deviation in the 



behavior of the application will be identified by the 

runtime monitor as a possible exploitation of union 

query based SQLIAs and halts the execution of the 

application. The runtime monitor also notifies the 

administrator about the attack. In this paper, we also 

present the preliminary results obtained when the 

runtime monitor developed using the framework is 

instrumented into a target web application to detect and 

prevent union query based SQLIAs. 

 

The paper is organized as follows. In Section 2, we 

discuss our research strategy and methodology. 

Evaluation and results obtained are discussed in 

Section 3. In Section 4, we discuss about related work 

and conclude in Section 5. 

 

2. Research Strategy and Methodology 
 

In this section, we describe about statement 

injection based SQLIAs and more specifically union 

query based SQLIAs. We also discuss about the 

research strategy and methodology used for the 

development of the framework and finally overview of 

our framework is discussed. 

 

2.1 Modeling Union Query based SQL 

Injection Attacks 

 
A web application structure is a three-tiered 

architecture which consists of a web browser, an 

application server, and a back-end database server. A 

web application with such architecture will initially 

receive input from an external user, and then dispatch 

the queries to the underlying database for execution. 

Finally, the application will then retrieve and present 

data to the user based on the input provided. 
 

Serious security problems can arise in such application 

if the user inputs are not handled properly. In 

particular, SQLIAs occurs when a malicious user 

passes crafted input as part of the query, causing the 

web application to generate and send a query that in 

turn results in unintended behavior of the application. 

Statement Injection Attacks is a type of SQLIAs, using 

which attacker inserts additional statements consisting 

of union operator into the original SQL statement via 

user input. The union operator present in SQL is used 

to join multiple tables together. If an attacker inserts 

code containing the union operator, then the attacker is 

trying to return more information than the query 

intended. Therefore union query based SQLIAs aims to 

compromise data confidentiality. 

 

For example, if a database contains usernames and 

passwords, the application may contain code such as 

the following: 

 

Query = “SELECT * FROM employeeinfo WHERE 

name = ’ “+ request.getParameter (“name”) +” ’ 

AND password = ’ “+ request.getParameter 

(“password”) +”  ’  ”; 

 

This code generates a query intended to be used to 

authenticate a user who tries to login to a web site. If a 

malicious user enters “ ’ union select * from 

employeesal -- ” and “ ‘ ’ ”   instead of a legitimate 

username and password into their respective fields the 

query string becomes as follows: 

 

SELECT * FROM employeeinfo WHERE name = ’ ‘ 

union select * from employeesal  -- ’ AND password =’ 

‘  ’ ’; 

 

Any website that uses this code would be vulnerable to 

union query based SQLIAs. The character “--” 

indicates the beginning of a comment, and everything 

following the comment is ignored. Therefore, the query 

now becomes the union of two select queries. The first 

select query returns a null set because there are no 

matching records in employeeinfo table. The second 

select query returns all the records from the table 

employeesal. When the above query is executed the 

user will bypass the authentication logic and the union 

query will retrieve all records from the table 

employeesal. Thus, the attacker successfully gains 

unauthorized access to the sensitive and valuable 

information about all the users stored in a different 

table.  

 

2.2 Runtime Monitoring Framework for Union 

Query based SQL Injection Attacks 
 

Our framework uses the information gathered from 

pre-deployment testing of web application, to help in 

development of runtime monitor to detect and prevent 

union query based SQLIAs. The framework initially 

uses a software repository which consists of a 

collection of documents related to requirements, 

security specifications, and application source code, 

etc., to find the critical variables. Combination of basis-

path and data-flow testing techniques is then used to 

find all the legal/valid execution paths that the critical 

variables can take during their lifetime in the 

application. Data-flow analysis testing [6] is an 

effective approach to detect improper use of data and 

can be performed either statically or dynamically. 



Basis-path testing [7] is a white box testing technique 

that identifies the minimal set of all legal execution 

paths from both the control flow graph of the program, 

and by the calculation of cyclomatic complexity - the 

measure of number of independent paths in the 

program being considered. We thus make use of the 

aforementioned pre-deployment testing techniques, i.e. 

basis-path and data-flow techniques, to identify the 

minimum number of critical paths to be monitored 

during the post-deployment phase of the application.  

 

Runtime monitor is then developed to observe the 

path taken by critical variables and check them for 

compliance with the obtained legal paths. During 

runtime, if the path taken by the identified critical 

variables violates the legal paths obtained, this implies 

that the critical variables consist of the malicious input 

from the external user and the query formed is trying to 

access confidential information from the back-end 

database.  This abnormal behavior of the application, 

due to the critical variables, is identified by the runtime 

monitor and immediately notified to the administrator. 

The framework described is shown in Figure 1 and 

consists of three modules which are discussed below in 

detail.  

 

Critical Variables Identification (CVI): variables 

which accept external user input, and also are part of 

critical operations that involve query executions are 

termed as Critical Variables. The CVI module accepts 

a Java based web application source code as an input 

and outputs all the Critical Variables present in the 

application. In our present implementation, the 

identification process is done manually and we intend 

to automate this process in our future implementation.  

 

Path Identification Function (PIF): The Path taken 

by the critical variables during their execution is 

identified by PIF module. The module takes the critical 

variables - identified during CVI module in the 

previous step, as input and returns the paths that need 

to be monitored.  The module uses a combination of 

data-flow and basis-path testing techniques to generate 

the paths. Data-flow testing of the critical variables 

identifies all the legal sub-paths that can be taken by 

critical variables during execution. Basis-path testing is 

performed to identify the minimum number of legal 

execution paths of the application.  Since basis-path 

testing leads to reduced number of monitorable paths, 

the complexity of our proposed technique in terms of 

integrating monitors across multiple paths also reduces.  

The path identification function builds the set of critical 

paths to be monitored in the application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 1: Overview of Runtime Monitoring Framework 

 

Let C = {C
1
, C

2
……., C

m
} be a set of m critical 

variables identified during critical variable 

identification phase.  

  

Let  PC = {{ PC
1
 } U { PC

2
 } U …..,{ PC

m
}} be a set of 

critical variable sub- paths such that,  PC
i
 is a set of all 

valid sub-paths a critical variable C
i
 can take during its 

lifetime in the application, identified by performing 

data-flow testing on C
i
, where i ϵ [0, m].  

 

Let P = {P
1
, P

2
 ……, P

k
} be a set of k legal paths 

identified using basis-path testing and CP is a set of 

paths we intend to monitor. 

 

CP is identified using the pseudo code shown below: 

 

CP = { } 

for every P
j  

ϵ P and 

       for every PC
i  

ϵ PC  

 if (P
j 
∩ PC

i 
== PC

i 
) 

     CP = CP U { P
j
 } 

 

where, i ϵ [0, m] and j ϵ [0, k] 

 

We thus identify all the critical paths of the application 

to be monitored. 

 



Monitor Development and Integration (MDI): This 

module develops the runtime monitor for identified 

critical paths and instruments it into the appropriate 

part of the source code.  AspectJ [8] is used to generate 

and integrate monitor into the application. Henceforth, 

on every query execution, the runtime monitor tracks 

the identified critical variables by monitoring their 

execution path. When a critical variable follows an 

invalid path, the runtime monitor immediately detects 

the abnormal behavior of the application due to the 

critical variable and notifies the administrator. 

 

3. Evaluation and Results 
 

In this section, we discuss the results obtained when 

the runtime monitor developed using our proposed 

framework is instrumented into the subject web 

application discussed below.  

 

For the experimentation purpose, we developed an 

interactive web application called “Employee 

Information Retrieval Application”. It accepts input 

from an external user through a web form, and uses the 

input to build queries to an underlying database, and 

retrieves the relevant information of the particular user. 

Front-end of the application is developed using HTML 

language, Java Servlet is used for processing the input 

received from the user and connecting to the back-end 

database for retrieving and displaying the information 

to the user. Also, MySQL database is used at the back-

end to store the employee related information. The 

application consists of two tables named empinfo and 

empsal. The table “empinfo” consists of six fields 

namely: UserName, Password, SSN, Name, Age, and 

Department.  Another table “empsal” consists of six 

fields namely: Name, Department, Title, Sal, 

Position_Id, and EmailId. 

 

When legitimate input i.e. username and password are 

provided by the user, the submitted credentials are then 

used to dynamically build the query as shown below: 

 

String query = “Select * FROM empinfo where 

username = ‘”aanthony”’ and password = 

‘”andrewSFO”’”; 

 

When an illegitimate input such as ‘ union select * 

from empsal --  and ‘ ’ is provided by an external user 

for username and password variables respectively, this 

causes a type of statement injection based SQLIAs 

(more specifically a union query based SQLIAs) on the 

subject application.  By inserting “union” query in the 

input field the attacker is trying to gain access to all the 

records present in another table named “empsal”. The 

submitted credentials are used to dynamically build the 

query as shown below: 

 

String query = “Select * FROM empinfo where 

username = ‘ “ ’ union select * from empsal  -- ” ’ and 

password = ‘ “ ” ’”; 

 

The two dashes at the end of the union query comments 

out the rest of the query. The first Select query returns 

a null set because there is no matching record in the 

table empinfo. The second query will try to return all 

the data from the empsal table. Thus, the illegitimate 

union query based SQLIAs provided by the external 

user will cause the application to behave in an 

abnormal way by displaying all the records present in 

another table named empsal. The runtime monitor 

instrumented in the subject web application will detect 

this abnormal behavior of the application trying to 

display all the records present in another table and halts 

the execution of the application. The monitor also 

notifies the administrator about the possible union 

query based SQLIAs.  

 

The experimentation performed clearly demonstrates 

the success of the developed runtime monitor to handle 

union query based SQLIAs on the subject application. 

The developed monitor successfully allowed all the 

legitimate queries to be executed on the application and 

detected all the union query based SQLIAs i.e. both 

false positives and false negatives were handled 

effectively.  

 

Though a simple target web application along with 

small number of inputs has been used to perform our 

experimentation, the preliminary results obtained are 

encouraging. However, more extensive 

experimentation is needed before drawing definitive 

conclusions. 

 

4. Related Work 
 

The state-of-the-art in SQLIAs detection and 

prevention techniques is discussed in this section. The 

techniques are classified into two categories namely: (i) 

Pre-deployment Techniques and (ii) Post-deployment 

Techniques. 

 

4.1 Pre-deployment Techniques 

 
Pre-deployment techniques consist of 

methodologies which are used earlier in the Software 

Development Life Cycle i.e. before the software has 



been deployed in the real world to detect SQLIAs in 

web applications. Techniques discussed in this section 

also come under the category of static analysis using 

which the applications are tested for possible SQLIAs 

without executing the application.  

 

Wasserman et al. [9] proposed a static analysis 

framework that operates directly on the source code of 

the application to prevent tautology based SQLIAs. 

Static analysis is used to obtain a set of SQL queries 

that a program may generate as a finite state automaton. 

The framework then applies an algorithm on the 

generated automaton to check whether there is a 

tautology and the existence of a tautology indicates the 

presence of a potential vulnerability. The important 

limitation of Tautology Checker is that, it can detect 

and prevent only tautology based SQLIAs, which is 

only one of the many kinds of SQLIAs that our 

technique addresses.  

 
Livshits et al. [10] use static analysis techniques to 

detect SQL injection vulnerabilities in web 

applications. User-provided specifications of 

vulnerability pattern in PQL language are used to find 

all vulnerabilities matching the specification. The 

primary limitation of this approach is that it can only 

detect know and specified vulnerability patters of 

SQLIAs and cannot detect SQL injection attack 

patterns that are not known beforehand.  

 

Fu et al. [11] proposed SAFELI a static analysis tool 

which can automatically generate test cases exploiting 

SQL injection vulnerabilities in ASP.NET web 

applications. SAFELI analyzes the source code of the 

applications and identifies SQL injection 

vulnerabilities. The main drawback of this technique is 

that, this approach can discover the SQLIAs only on 

Microsoft based products.  

 

Mui et al. [12] proposed ASSIST to protect Java based 

web applications against SQLIAs. A combination of 

static analysis and program transformation is used by 

ASSIST which first uses static analysis to find host 

variables and automatically sanitizes them by 

instrumenting them with calls to sanitized functions.  

 

All the above mentioned techniques are used to detect 

SQLIAs in web application during its pre-deployment; 

these are static techniques which employ the use of 

static code analysis to identify the source of injection 

vulnerabilities in code or occurrences of attacks. A lot 

of SQLIAs occur once the software is deployed in the 

real world and in this perspective, our proposed 

technique uses dynamic analysis and in particular 

runtime monitoring technique to detect and prevent 

SQLIAs based on the behavior of the web application 

during its post-deployment.  

 

4.2 Post-deployment Techniques  
 

Post-deployment techniques are dynamic analysis 

techniques which can be used to detect SQLIAs in web 

applications after it has been deployed. In this section, 

we discuss about the existing techniques that come 

under the category of post-deployment and compare 

them with our proposed approach. 

 

Buehrer et al. [13] present a novel runtime technique to 

eliminate SQL injection. The technique is based on 

comparing at runtime the parse tree of the SQL 

statement before inclusion of user input with that 

resulting after inclusion of input. SQLGuard requires 

the application developer to rewrite code to use a 

special intermediate library or manually insert special 

markers into the code where user input is added to a 

dynamically generated query. SQLGuard uses a secret 

key to delimit user input during parsing by the runtime 

checker and so the security of the approach is 

dependent on the attacker not being able to discover 

the key. 

 

Halfond et al. [14] propose a model-based technique 

called AMNESIA for detection and prevention of 

SQLIAs that combines the static and dynamic analysis.  

During the static phase, models for the different types 

of queries which an application can legally generate at 

each point of access to the database are built. During 

the dynamic phase, queries are intercepted before they 

are sent to the database and are checked against the 

statically built models. If the queries violate the model 

then a SQLIA is detected and further queries are 

prevented from accessing the database. The accuracy of 

AMNESIA depends on the static analysis for building 

query models. 

 

The approaches discussed above use static analysis 

technique to identify the intended structure of SQL 

queries in the absence of user inputs, by analyzing the 

source code and constructing the syntactic models like 

parse trees. These approaches then use dynamic 

analysis and detect SQLIAs at runtime if the 

dynamically generated query, which includes user 

inputs, deviates from the statically generated syntactic 

models. In our proposed approach pre-deployment 

testing techniques, such as data-flow and basis-path, 

are used to find the valid/legal behaviors of the 



application in the presence of user input; during 

runtime, the developed monitors perform the runtime 

monitoring to observe if the execution of the 

application deviates from the specified valid/legal path. 

 

5. Conclusion 
 

In this paper, we presented a Runtime Monitoring 

Framework for development of runtime monitors, 

which perform runtime monitoring of a web application 

during its post-deployment to detect and prevent union 

query based SQLIAs. Thus, using our framework, we 

ensure that the quality and security of the application is 

achieved not only during its pre-deployment, but also 

during its post-deployment. The results obtained 

indicate that the runtime monitor was successfully able 

to handle all the union query based SQLIAs on the 

subject web application and allowed legitimate inputs 

to access the database. We further intend to automate 

the entire process of the development of monitors and 

extend the framework to detect and prevent all other 

types of SQLIAs. 

 

6. References 
 
[1] OWASP – Open Web Application Secuirty Project. Top 

ten most web application vulnerabilities. http:      

//ww.owasp.org/index.php/OWASP_TOP_Ten_Project, 

April 2010. 

 

[2] W. G. J. Halfond, A. Orso and P. Manolios, “Using 

Positive Tainting and Syntax-aware Evaluation to Counter 

SQL Injection Attacks”, In SIGSOFT’06/FSE-14: 

Proceedings of the 14th ACM SIGSOFT         International 

Symposium on Foundations of Software Engineering, 2006. 

 

[3] W. G. J. Halfond, A. Orso and P. Manolios, “A 

Classification of SQL Injection Attacks and 

Countermeasures”, Proceedings of the IEEE International 

Symposium on Secure Software Engineering. 2006. 

 

 [4] W. G. J. Halfond and A. Orso, “Combining Static 

Analysis and Runtime Monitoring to Counter  SQL Injection 

Attacks”, Proceedings of 3rd International Workshop on 

Dynamic Analysis, 2005. 

 

[5] R. Dharam and S. Shiva, “Runtime Monitors for 

Tautology based SQL Injection Attacks”, International 

Conference on Cyber Security, Cyber Warfare and Digital 

Forensics, Kaula Lumpur, Malaysia, June 2012. 

 

[6] K. Saleh, A. S. Boujarwah, J. Al-Dallal, “Anomaly 

Detection in Concurrent Java Programs Using Dynamic Data 

Flow Analysis”, Information and Software Technology, 

Volume: 43, Issue: 15, December 2001. 

 

[7] Mohd. Ehmer Khan, “Different Approaches to White Box 

Testing Technique for finding Errors” , International Journal 

of Software Engineering and Its Applications, Vol. 5, No. 3, 

July 2011. 

 

[8] AspectJ Cookbook, Russ Miles, December 27, 2004. 

 

[9] G. Wassermann and Z. Su, “An Analysis Framework for 

Security in Web Applications”, Proceedings of the FSE 

Workshop on Specification and Verification of Component 

Based Systems, 2004. 

 

[10] V. B. Livshits and M. S. Lam, “Finding Security Errors 

in Java Programs with Static Analysis”, Proceedings of the 

14th Usenix Security Symposium, 2005. 

 

[11] X. Fu and K. Qian, “SAFELI – SQL Injection Scanner 

Using Symbolic Execution”, Proceedings of 2008 Workshop 

on Testing, Analysis, and Verification of Web Services and 

Applications, 2008. 

 

[12] R. Mui and P. Frankl, “Preventing SQL Injection 

through Automatic Query Sanitization with ASSIST”, Fourth 

International Workshop on Testing, Analysis and 

Verification of Web Software, 2010. 

 

[13] G. T. Buehrer, B. W. Weide and P. A. G. Sivilotti, 

“Using Parse Tree Validation to Prevent SQL Injection 

Attacks”, International Workshop on Software Engineering 

and Middleware, 2005. 

 

[14] W. G. Halfond and A. Orso, “AMNESIA: Analysis and 

Monitoring for Neutralizing SQL-Injection Attacks”, 

Proceedings of the IEEE and ACM International Conference 

on Automated Software Engineering, Nov 2005. 

 


