
Analysis of Monitoring Tools for Java Applications 

Ramya Dharam 
1
, Sajjan G. Shiva 

1
  

Department of Computer Science 

1
 University of Memphis, Memphis, TN, USA 

 

Abstract. Runtime Monitoring is performed during the execution of software to detect anomalies in them. Currently 

several tools are available that help in developing the monitors. We analyze the prominent monitoring tools available 

for Java applications based on two features, the properties that can be monitored using these tools and the specification 

language used to specify the monitorable properties. The analysis performed will help the users and developers better 

evaluate the characteristics of different monitoring tools available in order to select the one suitable for their application. 

 

Keywords: Runtime Monitors, Software Properties, Specification, Specification Language, Software. 

1. Introduction  

      Many software systems have been deployed in critical areas like avionics, medical electronics, 

automobiles and for other activities like online banking, online shopping and social networking etc. In these 

areas we need the software systems to behave reliably i.e. produce expected results and should not reveal 

confidential information.  Many a times due to internal faults and external intrusions these systems do not 

behave reliably i.e. deviate from their expected behavior, produce unexpected results and reveal confidential 

information. This creates the need for continuously monitoring a running system to detect the anomalies and 

to possibly prevent the systems from critical breakdowns.  

A monitor is a software program that continuously observes the behavior of an executing target program and 

currently available tools help in the construction of monitors. These tools will take the specification of 

software properties to be monitored in the target program as input, and construct the monitors automatically. 

The major contribution of this work is comparative analysis of prominent runtime monitoring tools available 

for Java applications. This analysis will help both developers and users to make a better choice of tools they 

would like to utilize for monitoring their applications based on their needs. Section 2 presents the 

comparative analysis of the monitoring tools. Section 3 discusses related work and conclusion is presented in 

Section 4.  

2. Runtime Monitoring Tools  

Different runtime monitoring tools available for applications developed using different programming 

languages is surveyed in [8], which distinguishes the tools based on the features like specification language, 

monitor type, event handler and the operational issues. Since today most of the applications are built using 

Java, in this section we present comparative analysis of the prominent tools available for monitoring Java 

applications. We analyze the tools to identify two main features: the properties that can be monitored in the 

application and the specification language used to specify the identified properties.  

______________________________________________ 
 
  Corresponding author. Tel.: + (901-678-5465); fax: + (901-678-1506). 

   E-mail address: (rdharam@memphis.edu, sshiva@memphis.edu ). 

2012 International Conference on Software and Computer Applications (ICSCA 2012) 

mailto:rdharam@memphis.edu
mailto:sshiva@memphis.edu


2.1. Jass 

Java with assertions (Jass) [3] is a pre-compiler. It allows Java programs to be annotated with specifications 

using different kinds of assertions. Assertions are Boolean expressions written as comments into the Java 

code.  Kinds of assertions that can be inserted into Java source code include method pre and post conditions, 

class invariants, loop invariants and variants, beginning/ending of method call and order of method 

executions. Jass then translates from the annotated program a pure Java program and the compliance of the 

program with its specification is dynamically tested during the runtime. Violation of the specification will be 

indicated by throwing a Java exception.  

 

Jass allows the monitoring points to be manually identified by the user and specification at the identified 

points will be directly written into the program in the form of assertions. This avoids the usage of any 

external tool needed for identifying the monitoring points and instrumentation of the monitoring code with 

the source code. The syntax of assertions is close to programming language and easy for Java users thus, 

avoiding the need to learn a new specification language. Thus Jass tool is suitable for monitoring concurrent 

and reactive systems. 

2.2. Java Mac            

Java MaC [1] consists of two phases: the static phase and the runtime phase. The static phase is before the 

execution of the target program in which runtime components a filter, an event recognizer and a runtime 

checker are automatically generated from the formal requirement specification. During the runtime phase, 

information about the current execution is collected and checked against the formal requirement specification. 

Two separate languages are used to describe the requirement specification. The low-level and high-level 

requirement specifications are written in Primitive Event Definition Language (PEDL) and Meta Event 

Definition Language (MEDL) respectively. These two specifications help in separating low-level 

implementation specific details of monitoring from high-level requirements checking. The PEDL 

specification defines about the information that will be sent from the filter to the event recognizer and 

contains all the implementation specific details of monitoring. Execution points like beginning/endings of 

methods are declared to be monitored.  

 

Java MaC provides a clear separation between monitoring implementation dependent low-level behavior and 

high-level behavior checking against the formal requirement specification. This characteristic of Java MaC 

distinguishes it from others. It supports automatic instrumentation of executable codes and real time systems 

built in Java can be monitored using this tool. 

2.3. Java MOP  

Java MOP [4] uses Monitoring Oriented Programming Framework. Specifications provided in separate files 

by users define different properties to be monitored like class invariants, interface constraints, method 

pre/post conditions and order of method calls. These specifications are compiled into AspectJ code 

consisting of AspectJ aspects. The generated AspectJ code is the monitoring code and is weaved into the 

program one wishes to monitor using any AspectJ compiler. Once weaved simply running the program as 

normal results in a monitored run of the program. Upon violations detection suitable actions like intimation, 

recovery and restoration are performed.  Currently Java MOP tool supports only properties within the scope 

of the class; therefore each Java MOP specification file corresponds to a Java class containing all properties 

concerning that class. Each property to be monitored must be specified using any of the following 

specification languages: Extended Regular Expressions (ERE), Past Time Linear Temporal Logic (PTLTL) 

and Future Time Linear Temporal Logic.  

Software projects whose requirements can be translated into monitorable properties can be used with Java 

MOP. The tool allows the usage of different specification language and integrates monitors at the program 

level. 

 



2.4. AMNESIA 

Analysis and Monitoring for Neutralizing SQL Injection Attacks (AMNESIA) [6] is a tool that detects and 

prevents SQL injection attacks in Java based Web applications.  Combination of static analysis and run time 

monitoring technique is used by this tool which is composed of three modules namely Analysis module, 

Instrumentation module and Runtime Monitoring module.  

 

The Analysis module takes Java Web Application as input and outputs a list of hotspots and a SQL Query 

model for each hotspot. Hotspots are the points in the application code that issue SQL queries to the 

underlying database. For each hotspot, an SQL-query model is built that represents all of the possible SQL 

queries that may be generated at that hotspot. The Instrumentation Module takes Java application and a list 

of hotspots as input and instruments each hotspot with lines of code to make a call to the runtime monitor 

before a call to the database. Third, the runtime monitoring module takes a query string and the ID of the 

hotspot that generated the query as input and retrieves the SQL query model for that hotspot. At runtime the 

application executes normally until it reaches a hotspot, at this point the monitor checks whether the query 

violates the hotspot’s SQL query model by checking whether the model accepts the sequence of tokens in the 

query string. If the model does not accept the sequence of token, the query is identified as an attack and the 

query is then blocked and reported.  

 

Monitoring Web applications for SQL injection attacks is the main focus of AMNESIA which distinguishes 

this tool from the rest. 

2.5. LIME 

The LIME [5] interface monitoring tool determine at runtime if software component violates the given 

specifications. Interface Specification Language (ISL) is used for specifying the interaction between the 

software components in a manner that can be monitored at runtime. The interactions are specified either by 

call specifications which specify the allowed call sequences to a Java object instance or by return 

specifications which specify the allowed behaviors of the Java object instance. Both the call and return 

specifications are expressed as Java annotations to Java interfaces and classes. The call and return 

specifications use atomic propositions to describe the expected properties of software interface components 

and are written in several different ways as past time LTL formulas, as future time LTL formulas, as regular 

expressions, and as non deterministic finite automata.  

 

The LIME runtime monitoring tool translates the annotations in Java source file into deterministic finite state 

automata which functions as observers. The automaton is then translated into Java code and AspectJ will be 

used to weave the code into the original source code. This eventually produces an instrumented runtime 

environment where observers are executed at the time points. If a call specification is violated, the incorrect 

calling component is detected and if the return specification is violated the incorrect called component is 

detected. 

 

The LIME runtime monitoring tool can be extensively used to monitor the behavior of Java interfaces. The 

LIME interface specification language allows the specifications to be written as annotations to Java 

interfaces. 

 

2.6.   LARVA 

LARVA [7] performs runtime verification of properties of Java programs including real time properties. The 

five components present in LARVA consists of a system, a formal notated specification, a stream of events 

extracted from the system, a monitoring system which receives the events and verifies them according to the 

specification and a feedback loop. The input to LARVA is a Java program that is monitored and a LARVA 

script consisting of a set of specifications written using DATE specification language. LARVA compiler 

transforms the specification into the monitoring code that also contains a number of aspects that extracts the 

events from the system. The different properties that can be successfully monitored using LARVA include 

invariants, count the occurrence of number of events, duration of an event to occur i.e. real time. 

 



A real-life financial system responsible for handling credit card transactions was successfully monitored 

using LARVA tool. 

 

The analysis performed in this section is illustrated using a table described in Appendix A. 

 

3. Related Work 

Delgado et al., in [8] surveyed the prominent monitoring tools available by providing a taxonomy based on 

languages used to specify properties, types of monitors constructed, event handlers, and the implementation 

issues. They present only the class of properties which can be monitored using the monitoring tools as well 

as the specification paradigms for those classes of properties and give the general outline of the state-of-art 

technology of monitoring tools a decade ago. We in this work focus only on the monitoring tools currently 

available for systems built in Java. We specify both the classes and the typical properties that can be suitably 

monitored using each tool.  The specification languages used to specify the properties are discussed and 

analyzed to provide an insight as to how the property specifications and the instrumentation points defined 

by the developer are implemented in constructing a monitor.  

4. Conclusion                   

We provide a comparative analysis of the prominent monitoring tools available for Java applications. The 

analysis is performed based on two features i) the properties that can be monitored by the tool ii) the 

specification language used by the tool to specify the monitorable properties.  

 

The analysis performed clearly illustrates that there exists different monitoring tools to monitor different 

software properties and choosing a tool depends on the user’s needs. In this direction, the analysis performed 

in this paper will help a user understand the characteristics of different monitoring tools available for Java 

applications and better choose a monitoring tool suitable to their needs according to properties they intend to 

monitor in their application and ease of use of the specification language. 

5. References  

[1] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh Vishwanathan, “Computational analysis 

of run-time monitoring- fundamentals of Java-Mac,” in Elsevier Science B. V., Electronic Notes in Theoretical 

Computer Science 70 No. 4, 2002.  

[2] A.K. Mok and G. Liu, “Efficient Runtime Monitoring of Timing Constraints”, Proceedings of RTAS'97, June 9 

[3] D. Bartetzko, “Jass-Java with Assertions”, Proc. First Workshop Runtime Verification (RV ’01), July 2001. 

[4] F. Chen and G. Rosu, “Towards Monitoring-Oriented Programming: A Paradigm Combining Specification and 

Implementation”, Electronic Notes in Theoretical Computer Science, vol.89, no. 2, 2003. 

[5] K. Kahkonen, J. Lampinen, K. Heljanko and I. Niemela, “The Lime Interface Specification Language and Runtime 

Monitoring Tool”, 9
th

 International Workshop, RV 2009. 

[6] William G.J. Halfond and Alessamdro Orso, “AMNESIA: Analysis and Monitoring for Neutralizing SQL-Injection 

Attacks”, ASE ’05 Proceedings of the 20
th

 IEEE/ACM International Conference on Automated Software 

Engineering, 2005 

[7] C. Colombo, G. J. Pace, G. Schneider, “LARVA – Safer Monitoring of Real – Time Java Program”, Seventh 

International Conference on Software Engineering and Formal Methods, 2009.    

[8] Nelly Delgado, Ann Quiroz Gates, Steve Roach, “A Taxonomy and Catalog of Runtime Software-Fault Monitoring 

Tools,” IEEE Transactions on Software Engineering, Vol. 30, No. 12, December 2004. 

 

Appendix A 
The table below consists of three columns namely: Tool, Specification Language, and Monitored Properties.  

Below are the definitions taken into consideration for completing the table: 

 



A monitor is a system that observes the behavior of a system and determines if it is consistent with the given 

specification. A monitor takes an executing software system and a specification of software properties and 

checks that the execution meets the properties. [8] 

 

Software properties are relations within and among states of computation. Software properties can be defined 

as a set of sequence of states. The two types of properties considered are Safety and Temporal properties. 

Safety properties include invariants, properties that check values of variables, properties that define sequence 

of events. Temporal properties include timing properties. [8] 

 

Specification language is a language used to specify the properties associated with software behavior. [8] 

 
 

 

Monitoring  

Tool 
Specification Language  

Monitored Properties 

G
lo

b
al

 P
ri

m
it

iv
e 

V
ar

ia
b

le
s 

L
o

ca
l 

P
ri

m
it

iv
e 

V
ar

ia
b

le
s 

C
la

ss
 I

n
v

ar
ia

n
ts

 

L
o

o
p

 V
ar

ia
n

ts
 a

n
d

 I
n
v

ar
ia

n
ts

 

B
eg

in
n

in
g

/E
n

d
in

g
 o

f 
M

et
h

o
d

 C
al

ls
 

O
rd

er
/S

eq
u

en
ce

 o
f 

M
et

h
o
d

 C
al

ls
 

M
et

h
o

d
 P

re
/P

o
st

 C
o

n
d

it
io

n
s 

In
te

rf
ac

e 
C

o
n

st
ra

in
ts

 

O
b

je
ct

 L
if

e 
C

y
cl

es
 

R
ea

lt
im

e 
(D

u
ra

ti
o

n
 o

f 
an

 E
v

en
t 

to
 o

cc
u
r)

 

C
o

u
n

t 
o

f 
th

e 
o

cc
u

rr
en

ce
 o

f 
 N

o
. 

o
f 

E
v

en
ts

 

H
o

ts
p

o
ts

 (
P

o
in

ts
 i

n
 A

p
p

li
ca

ti
o

n
 c

o
d

e 
th

at
 i

ss
u

e 

S
Q

L
 q

u
er

ie
s 

to
 t

h
e 

 u
n

d
er

ly
in

g
 d

at
ab

as
e)

 

 Jass                                 

 

Java Assertions 

(Assertions are Boolean expressions.) 

 

            

 Java MaC                               

 

Primitive Event Definition Language (PEDL)                             

Meta Event Definition Language (MEDL) 

 

            

 Java MOP                         

 

Future Time Linear Temporal Logic (FTLTL)                              

Past Time Linear Temporal Logic (PTLTL)                            

Extended Regular Expressions (ERE)     

                                    

            

 AMNESIA                                                -             

LIME LIME Interface Specification Language (ISL)             

LARVA DATE, LUSTRE             

 


