

Game Theory-based Defense Mechanisms against

DDoS Attacks on TCP/TCP-friendly Flows

Harkeerat Singh Bedi, Sankardas Roy, Sajjan Shiva

Department of Computer Science

University of Memphis

Memphis, TN, USA

Abstract— While there are significant advances in information

technology and infrastructure which offer new opportunities,

cyberspace is still far from completely secured. In many cases,

the employed security solutions are ad hoc and lack a

quantitative decision framework. To this end, game theory poses

huge potential in building a defense architecture based on a solid

analytical setting. In this paper, we explore the applicability of

game theoretic approaches to the cyber security problem while

keeping the focus on active bandwidth depletion attacks on

TCP/TCP-friendly flows. We model the interaction between the

attacker and the defender as a game in two attack scenarios: (i)

one single attacking node for Denial of Service (DoS) and (ii)

multiple attacking nodes for Distributed DoS (DDoS). The

defender’s challenge is to determine optimal firewall settings to

block rogue traffic while allowing legitimate ones. Our analysis

considers the worst-case scenario where the attacker also

attempts to find the most effective sending rate or botnet size. In

either case, we build a static game model to compute the Nash

equilibrium that represents the best strategy for the defender.

We validate the effectiveness of our game theoretic defense

mechanisms via extensive simulation.

Keywords – Denial of Service (DoS); Distributed DoS; TCP-

friendly flows; Game Theory; Simulation.

I. INTRODUCTION

The Nation‟s economic progress and social well-being are
becoming increasingly dependent on cyberspace. At the same
time, the growing inter-connectivity and the increasing
availability of the computational power for the attacker is
providing for distributed and sophisticated attacks [3]. The
research and practicing community have paid attention to the
cyber security problem for more than two decades. However,
the problem remains mostly unsolved. The core security
breaches occur in terms of confidentiality, integrity, and
availability.

The main limitation of the current cyber security practice is
that the security approach is largely heuristic, increasingly
cumbersome, and is struggling to keep pace with rapidly
evolving threats. Most of the current security approaches lack a
quantitative decision framework. As game theory deals with
problems in which multiple players with contradictory
objectives compete with each other, it can provide a
mathematical framework for modeling and analyzing network
security problems. As an example, a system administrator
(defender) and an attacker can be viewed as two competing
players participating in a game. Recently, researchers have

started exploring the applicability of game theory to address
this problem [11].

In this paper, we focus on bandwidth depletion attacks for
Denial of Service (DoS) or Distributed DoS (DDoS) where a
single attacking node or multiple attacking nodes attempt to
break down one or more network links by exhausting limited
bandwidth. We consider the interaction between the attacker

1

and the defender (network administrator) as a two player game
and apply game theory-based countermeasures. For each of
DoS and DDoS cases, we design a game model. The attacker
attempts to find the most effective sending rate or botnet size
while the defender‟s challenge is to determine optimal firewall
settings to either block or redirect rogue traffic while allowing
legitimate ones. We study the existence of the Nash
equilibrium, which represents the best strategy of each player.
We show the benefit of using game theoretic defense
mechanisms for the network administrator.

We focus on a widely practiced type of denial of service
attacks which are launched by creating congestion on TCP or
“TCP-friendly” flows. TCP-friendly flows are the type of flows
which adhere to the TCP ideology of “fair” bandwidth sharing
of a congested bottleneck link. One definition of “fair” is that
of TCP “friendliness” [9, 5] – if a non-TCP connection shares a
bottleneck link with TCP connections, traveling over the same
network path, then the non-TCP connection should receive the
same share of bandwidth (i.e., achieve the same throughput) as
a TCP connection. In the rest of the paper, for ease of
exposition, „TCP-friendly‟ flows refer to TCP/TCP-friendly
flows.

II. RELATED WORK

The research community has been actively studying the
Denial of Service (DoS) attacks over the last two decades.
There are many significant contributions made to mitigate a
variety of these attacks [6]. The key of DoS/DDoS defense
approaches is to identify malicious nodes and restrict their
packet injection from the source or drop unwanted packets at
intermediate routers before they reach the destination. Lau et
al. [4] experimented with various queuing algorithms to
determine which queuing method in the target router could
provide better management of the bandwidth during a DDoS
attack.

Chertov et al. [10] emphasized that DoS is not only caused
by flooding but also by exploiting the congestion window of
TCP protocol used in the communication between the server
and the client. The experiments were based on the assumption

1We assume that one single attacker controls all of the attacking nodes
present in a botnet setup for DDoS.

that length of the attack pulse controls the tradeoff between
attack damage and attack stealthiness. During the congestion
avoidance phase, when packet losses occur TCP halves its
congestion window, which is the property exploited. In our
model we take into account the rate of data sent by the attacker
as the degree of maliciousness of the attacker. Moreover, our
model is not limited to only TCP flows. Our model also works
with non-TCP flows as long as they TCP-friendly in nature.

Andersen [2] proposed a proactive protection against DDoS
attacks, by imposing overhead on all transactions to actively
prevent attacks from reaching the server. Their architecture
generalizes the Secure Overlay Services (SOS) to choose a
particular overlay routing. The set of overlay nodes are used to
distinguish legitimate traffic from the attack traffic.

Yaar et al. [1] proposed a flow based mitigation filter for
DDoS flooding attacks. Stateless Internet Flow Filter (SIFF)
based approach uses a per-flow state, where the flows are
classified into two categories privileged flows, and
unprivileged flows with the goal of protecting privileged
packets from unprivileged packet flows.

Recently, the research community has designed efficient
honeypot systems to better understand the novel attack
techniques and attacker‟s strategies such as Potemkin [8] and
Collapsar [12].

Game theory has been applied in various application
domains and is attracting more attention from network
researchers for cyber security. Xu et al. [7] proposed a game-
theoretic model to defend a web service under DoS attack.
They used a single bottleneck link to simulate the attacks. The
metrics used for the performance of their system are total
throughput of the attackers and their legitimate clients,
legitimate client‟s average amount of time to download a web
page, number of concurrent attackers and clients, and packet
drop probability of the attackers and the clients.

Wu et al. [13] perform similar research where they
primarily focus on DoS/DDoS attacks launched using UDP
based traffic. In their model, the actions possible by the
defender are either to allow or drop incoming traffic. Our
model extends this by also providing defender with the ability
to redirect traffic to honeypot to learn more about the attacker.

Our work focuses on mitigating DoS and DDoS attacks for
TCP-friendly flows using a game theoretic approach.

III. PRELIMINARIES:

A. Network Topology

The real world scenario under consideration consists of
legitimate nodes attempting to transfer data to the target server.
The target server is intended to process incoming requests and
accept the uploaded data. Our network topology broadly
consists of attack nodes, legitimate nodes, a target server and a
honeypot. The attacker nodes are malicious in nature and
intend to send unreasonable uploads to the target server in
order to seize most of the available bandwidth, thus resulting in
a DoS/DDoS attack for the legitimate user uploads. One kind
of unreasonable request can include uploading the same file
multiple times and simultaneously.

For convenience, we list all the notations and abbreviations
used in this paper in Table I.

TABLE I. NOTATIONS USED THROUGHOUT THIS PAPER

Symbol Definition

 Target Server

 Perimeter Router

 Firewall

 Gateway

 Honeypot

 Network pipe end connected to interface

 Network pipe end connected to target server

 Total bandwidth of the pipe () between and .

 Number of legitimate nodes

 Number of attacking nodes

 Number of flows per attacking node

 Total number of nodes

 Total number of legitimate flows.

 Number of flows created by th legitimate user.

 Mean value of

 Standard deviation of

 Bandwidth consumed per node, which is ⁄ .

 Bit rate of a legitimate flow

 Standard deviation of a legitimate flow rate

 Bit rate of an attack flow

 Minimum bit rate for a flow to be considered alive

 Mean value of a legitimate flow‟s threshold

The network topology which we focus on for analyzing
DoS/DDoS attacks and its countermeasures is shown in Fig. 1.
Target Server is accessible to the Internet through a
Gateway machine which runs our proposed Game Inspired
Defense Architecture (GIDA) Module. This figure also
illustrates the flow of execution of our network model. The
traffic flow coming from the Internet destined for the target
server first interacts with the perimeter router of the
network, and then enters the Gateway (which runs the GIDA
Module) at interface .

The Gateway is an isolated machine which consists of three
interfaces where is connected with the Internet via the
perimeter router and and are connected with the
Target Server and Honeypot respectively. The interface
 is monitored by our GIDA Module which implements our
proposed defense architecture. Based on the decisions
computed by the GIDA Module, the traffic can be allowed to
go through interface and reach the target server , or
redirected to a honeypot via or dropped entirely. The
honeypot is primarily used for analyzing traffic and
learning further information from the attacker.

Figure 1.The Network Topology

B. Problem Statement

There are legitimate nodes that need to communicate with
the server , and also, there is one attacker who is interested
in launching a denial of service attack over the network
pipe which connects the gateway with the target
server . The attacker aims in do so by consuming most of the
bandwidth of the pipe . The attacker controls
attacking nodes that can perform arbitrary uploads to exploit
the limited bandwidth. It can be noted that DoS attack is a
special case of DDoS attack when .

Nodes labeled to are legitimate nodes which send
request to the target server and upload the requested data.
Nodes labeled to are the attack nodes which
simultaneously send a large number of requests to the target
server for uploading data and limiting network bandwidth
for the legitimate nodes. High usage of limited network
bandwidth over the pipe by the attacker nodes results
in a denial of service scenario for the legitimate nodes. Hence,
securing this pipe against such attacks is our goal. The
defender‟s controls are present in the GIDA Module which
consists of the Game Decision Agent and the firewall.

C. Assumptions

We would like to point out that our model is not network-
specific and is readily applicable to any DoS/DDoS scenarios
in a general network topology with the following assumptions:

 A single attacker controls all of the attacking nodes,
each of which sends arbitrary packets and file upload
requests to the server in order to misuse limited
network bandwidth.

 There is an infinitely high bandwidth available on the
channel between , the interface , and GIDA
Module is able to process all of the incoming packets.

 The attacker does not spoof a unique source address for
each packet in a single flow. Such spoofing would be
extremely difficult and is highly unlikely to occur.
Note that when the spoofed source address is the same

for the entire flow, the filtering mechanism would act
the same as if there were no spoofing.

 Furthermore, it is conservatively assumed that the
attacker has clever tools to detect whether his flows are
being redirected to the honeypot.

 We assume that all flows from all nodes (legitimate
and attack) are “TCP-friendly” in nature.

D. Main Idea

We envision GIDA as a security model which aims to
provide protection for target systems against attacks by
computing and performing preventive and defensive strategies
using game theoretic concepts. We consider the interaction
between the attacker and the defender (network administrator)
as a game played among them and aim to apply game theory-
based countermeasures.

The GIDA Module is the decision module which analyzes
the incoming flow and restricts or provides access to the target
server based on its computed decisions which in turn are based
on certain properties of the incoming flow. We envision that
this GIDA Module can be integrated as part of the target
system to be protected or can be an implemented as a
standalone arrangement. In this work, we consider the latter.
The GIDA Module primarily consists of two major
components which are a Game Decision Agent and a firewall.
The Game Decision Agent performs the game theoretic
analysis on incoming flows and computes the appropriate
defensive decisions which are then implemented using the
firewall. Decisions taken by the GIDA Module on incoming
flow encompass the actions possible by the defender to prevent
attacks and protect the target server .

In our present implementation, the GIDA Module
decisions:

 Allow traffic to flow to the target server as normal.

 Drop traffic at the firewall to prevent it from reaching
the target server .

 Redirect traffic to the honeypot for continuation of
the attack as intended by the attacker. This step is
crucial for further analysis, which can be helpful for
learning more about the kind of attack and the intention
of the attacker.

The actions possible by the attacker consist of the
following:

 Deploy an arbitrary number of attacker nodes that send
file upload requests the target server and consume
the limited available bandwidth resources by
performing multiple uploads simultaneously.

 Adjust the rate of file uploads from each attack node
during an attack instance.

Any of the above actions performed by the attacker yields a
certain amount cost and benefit to it. Use of less number of
nodes but with high request frequency yields a lower cost to the
attacker as he has to employ fewer number of nodes. However
this increases the probability of those attack flows being

Gateway

Honeypot

Target Server
P

1

P
2

i
2

i
3

i
1

Game

Decision

Agent
+

FW

Drop Flow

GIDA Module

 PR

Attack Nodes
(A

1
 to A

m
)

Legitimate Nodes
(L

1
 to L

n
)

redirected or dropped because now the attacker is required to
send more traffic from each attack node to consume a
significant amount of bandwidth of the target link. Use of
additional attack nodes with a lower frequency increases the
cost of the attacker due to the high number of nodes the
attacker has to employ, however the benefit also increases as
since the frequency of requests is moderate, the attack becomes
less obvious.

IV. GAME MODEL

In this section, we present our game models for DoS/DDoS
attacks and their possible countermeasures. We consider the
interaction between the attacker and the defender (network
administrator) as a two-player game. We study the existence of
equilibrium in these games and also show the benefit of using
the game-theoretic defense mechanisms.

The attacker attempts to find the most effective request
sending rate or botnet size to maximize his utilization of the
limited network bandwidth, and the defender‟s challenge is to
determine the best firewall settings to block and redirect
rogue traffic while allowing legitimate ones. We first discuss
some basic concepts of game theory and the profile of
legitimate nodes, and then construct our game models.

A. Basic Concepts of Game Theory

In a game, each player chooses actions that result in the
best possible rewards for self, while anticipating the rational
actions from other players. A strategy for a player is a
complete plan of actions in all possible situations throughout
the game. Nash equilibrium is a solution concept that describes
a steady state condition of the game; no player would prefer to
change his/her strategy as that would lower his/her payoffs
given that all other players are adhering to the prescribed
strategy. A static game is a one-shot game in which each
player chooses his/her plan of actions and all players‟
decisions are made simultaneously. A dynamic game is a game
with multiple stages in which each player can consider his/her
plan of actions not only at the beginning of the game but also
at any point of time in which they have to make a decision.

B. Legitimate User Profile

We consider the presence of legitimate nodes interested
to communicate with the target server . Each user uses one
or more TCP-friendly flows to do his/her work. We also
consider that the number of flows used by a user (which
originate from the same physical machine) follow a normal
distribution:

 , ; where represents

the number of flows of the user, is the mean value of a
legitimate user's number of flows , and is the standard
deviation. If one has information that follows a different
distribution, then the above normal distribution can be replaced
by this different distribution and our analysis will still remain
the same for the rest. For example, if one were required to
speculate the number of flows originating from a user over a
course of time, then following a Poisson distribution may be
more appropriate.

The available bandwidth of a legitimate flow at the absence

of any attack is

, where . This

observation for the bandwidth available per flow holds true

because we assume that all flows passing through the pipe
 are TCP-friendly in nature. By basic laws of
probability, we get

 , where is the
bandwidth of the pipe () between the interface and the
target server .

There is threshold bandwidth associated with a flow such
that if at any point of time the bandwidth available to a flow is
less than its threshold then that flow is considered as dead. This
threshold for each flow depends on the specific application the
flow is intended for, and is not related to the TCP protocol or
its optional keepalive feature. We assume a flow as being dead
if it does not meet this minimum threshold bandwith which is
dependent on the application.

We consider the threshold bandwidth of a legitimate flow
as a random variable. In particular, we model the threshold
bandwidth via a normal distribution. That means

 ,
 ; where represents the threshold bandwidth of

the flow, is the mean value of a legitimate flow's
threshold, and is the standard deviation.

The probability that legitimate flow will terminate in the
absence of any attack is []; where represents the
instantaneous value of and [] represents the
probability that the value of the random variable is greater
than . We assume that the pipe bandwidth is chosen such
that [] is negligible in attack-free scenarios. We also
assume that no two nodes connect to the server from the same
physical machine. However, a user can send more than one
flows from the same physical machine.

We now present our static game model. We assume that
one single attacker controls all of the attacking nodes. There is
only one attacking node in a DoS attack, while there are
multiple attacking nodes in a DDoS attack. Our discussion is
generic with respect to DoS or DDoS attacks, which considers
that number of attacking nodes is . If we replace by , we
get the DoS scenario.

C. A Static Game

A static game is a one-shot game, i.e, once a player decides
his strategy he does not have a second chance to change it. We
consider the attacker's reward is not necessarily the defender's
cost, i.e. it could be a zero-sum or non-zero sum game. The
actions available to the attacker are to set the number of attack
flows from a single machine and to select the number of
attacking nodes, .

Each flow in our model is identified by a pair of source and
destination IP addresses. We do not take the source and
destination ports into consideration for identifying a flow,
since, an attacker can open multiple connections with the target
server and they all contribute to the amount of bandwidth
used by the attacker in total. Therefore in our model, each user
flow is characterized by the amount of bandwidth used between
one IP source/destination address pair.

We assume that the attacker only uses TCP-friendly flows
to send its traffic and the attacker cannot cheat with TCP
protocol parameters such as the congestion window size,
packet sequence or acknowledgement numbers.

It is assumed that TCP protocol will ensure that each flow
gets an equal share of the bandwidth of the pipe , i.e.,
the bit rate is same for all of the flows (legitimate or attack
flows), which is represented by . We also assume that the
number of attack flows, is same for all the attack nodes. In an

attack situation each flow rate,

. If is small, then

we consider that the denial of service occurs due to congestion
in pipe (). In particular, severe situation happens when
 , and some of the legitimate flows die out, where be

the minimum bit rate for the flow to be considered as
active.

1) Impact of the Attack with no Defense Mechanism:

In no defence situation, all the flows pass through the
firewall to the target server . However, if is small, then we
consider that the denial of service occurs due to congestion in
pipe . That means, the bandwidth available to a
legitimate flow is reduced which results in more latency for
legitimate data transmission. In particular, severe situation
happens when , and some of the legitimate flows are
exhausted.

Let be the average number of legitimate flows which are

able to reach the server and whose rate is greater than . We
get []. Hence, we get the following results.

Average bandwidth consumption (by the attacker) ratio:

 (1)

As there are legitimate flows and attack flows which
equally divide the bandwidth we get equation (1).

Ratio of lost legitimate flows to the total number of
legitimate flows on average:

 []

 []

 (2)

The attacker's objective is to increase
 and

 , which
he considers as his rewards. On the other hand, we assume that
the attacker has to incur some cost to get control of an attacking
node. We assume that the attacker's cost () is proportional to
the number of attacking nodes employed and . We
model the attacker's net payoff as a weighted sum of the above
three quantities given as

 (3)

 where

 , and
 are the attacker's corresponding

weight parameters.

On the other hand, we model the defender's net payoff as a
weighted sum given as

 (4)

 where
 ,

 and
 are the defender's weight

parameters.

2) Defending Attacks with GIDA Module:

As discussed previously, the actions possible by the
defender consists of allowing the traffic to the target server ,
redirecting them to honeypot or dropping the same.

The defender selects two thresholds and for deciding
his actions on an incoming flow. He begins by computing the
total flow rate for a source node, where is the number of
flows for that node and is the bit-rate per flow. If the defender
observes that from a particular source node , the total flow
rate is , then the firewall allows these set of flows to
reach the target server . On the other hand, if
and then all the flows from this source node are
redirected to the honeypot . Finally, if then all
the flows from this source node are dropped by the firewall.
It should be noted that these decisions are probabilistic in
nature, which signifies that even if , there is a
minute likelihood that some flows from source node may be
dropped. This is the same for all other cases as well.

These thresholds and are used for creating two
sigmoid filters, namely and , which model the allowing,
dropping and redirecting probabilities of flows per source node.
These filter are designed as:

 ((

))

 (5)

 ((

))

 (6)

Here and represent the flow rate for which the
probability of dropping and redirecting a flow is 0.5
respectively. is a scaling parameter. The variable
represents the bandwidth consumed per node, which is ⁄ .

Fig. 2 illustrates one sample sigmoid curve for each filter.
This figure corresponds to the setting where units,
 and . The firewall drops a flow of rate with a
probability and redirects with a probability of .
Here represents the sum of all flows per user. It is worth
noting that some of the legitimate flows might get dropped at
the firewall. We consider that the defender decides the value of
 and , which are the only control parameters for these
filters. In Fig. 2, we consider the number of nodes sharing a
network pipe of limited bandwidth as two and hence the
legitimate share per user should not exceed half of the original
pipe bandwidth. This share per user can also be represented
using , which in this case becomes
 . To make the analysis simpler, we correlate
the two thresholds as and
 .

To make a graceful decision, the defender designs three
probabilistic functions , , and
 , which represent the probabilities with which the
flows from a source will be dropped, redirected or allowed
respectively. The 3

rd
 argument of these functions, namely ,

denotes the total bandwidth accessed by a particular source
node. Note that the summation of these three probabilistic
functions is always 1, and ; where is the bit-rate of
each flow and is the number of flows.

Figure 2. Plot of sample curves: Drop or redirect rate of a flow at the firewall
is modeled by a curve. The X axis is the flow rate and the Y axis is the drop
and redirect probabilities computed by the filters. The parameters and

represent the flow rate for which the drop and redirect probability is 0.5.

Fig. 3 illustrates the arrangement and working of these two
filters and together for creating the three probabilistic
functions and , which are used for computing the
probabilities for flows from a node that should be allowed to
reach the target server, redirected to the honeypot or dropped
by the firewall. The variable which denotes the total bit-rate
from each source is the input for the first filter . This filter
decides the probability whether flows from a node should be
dropped or not. The probability for dropping flows from a user
is directly obtained from this first filter and is denoted by .

Figure 3. Filter arrangement: Filters and represent the defender‟s
defense controls. These are used to compute the probabilities of allowing (),

dropping () or redirecting () incoming flows.

The probabilities of redirecting flows from a source node to
the honeypot () or allowing it to reach the target server ()
are obtained by using these two filters in combination. These
probabilities for dropping, redirecting and allowing flows are
defined as ; and
 .

Based on the above decision factors and probability
functions, if the attacker sends flows from each attack node,
we derive the following analytical results represented in

equations (7) and (8). These are derived using the same logic as
in equations (1) and (2) while considering the attack condition.

Average bandwidth consumption (by the attacker) ratio:

 (7)

Ratio of lost legitimate flows to the total number of
legitimate flows on average:

 *

+ (8)

Here ; where is the mean value of the total
number of flows for one legitimate node and represents the
total number of legitimate nodes.

The purpose of honeypot redirection is to learn more about
the attacker before the defense architecture begins dropping
their flows. This step also reduces the load on the target server
 by offloading the attacker‟s traffic. Data collected using
honeypots can be used in various ways. The methods in which
defense architectures can use the data collected using a
honeypot is outside the scope of this work. Hence we assume
the amount of cost incurred by the defender for using a
honeypot equals the amount of information gained from the
attacker by using the same.

We assume that the defender instantiates a honeypot from
an active honeynet [8, 13] when he decides to learn more about
an attacker. In our case, this decision is made based on the bit-
rate used by an attacker over the pipe . As the attacker‟s
total bit-rate exceeds the firewall threshold , his flows are
likely to be redirected to the honeypot.

Instantiation of a honeypot requires a cost to the defender as
valuable and limited resources are required for this process. We
assume that each learning process per attacker requires an
instantiation of a new honeypot for that respective attacker.
Hence, one honeypot for every attacker is instantiated as they
exceed and are below . However, once instantiated we
assume the cost per attacker is nominal.

The attacker wants to reduce the redirection of his flows to
the honeypot as it does not assist him in accomplishing his goal
of utilizing the pipe ‟s bandwidth and his resources are
wasted. We assign to this a weight factor for the attacker

 .

The defender on the other hand is interested in redirecting
the flows from an attacker for learning more about the attacker.
However, instantiating a honeypot requires a cost to the

defender. We assign to this a weight factor for the defender
 .

We consider the amount of flows redirected to the honeypot
as the defender‟s benefit of using the same as follows:

 (9)

We can compute the attacker and defender's payoffs (

and) from expression (3) and (4), respectively by replacing

 by

 and
 by

 and extending it to include
 .

Therefore the new payoff functions become:

 (10)

𝑥
𝐹𝑑

𝐹𝑟

𝐹𝑎

𝐹

𝐹

where

 ,
 and

 are the attacker's corresponding
weight parameters.

On the other hand, we model the defender's net payoff as a
weighted sum given as

 (11)

where
 ,

 ,
 and

 are the defender's weight
parameters.

We use the notion of Nash equilibrium to determine the
best strategy profile of these two players. Each player has the
goal to maximize their payoff. The attacker needs to choose an
optimum and . The defender needs to choose an optimum
 and . The Nash equilibrium of this game is defined to be a
pair of strategies (

) which simultaneously satisfy

the following two relations:

 (12)

 (13)

We can analytically compute the Nash equilibrium strategy
profile (

), which could also be obtained through

numerical computation for a particular game setting.

V. SIMULATION RESULTS

We use MATLAB as the platform for numerical
computation. The following analysis shows an interesting case
in which the total bytes sent by the attacker remain constant,
which means that the attacker only needs to set the value of .
In our future work, we aim to extend this analysis to a more
general case.

We begin our simulation by first developing the firewall
filters which are controlled by manipulating their mid-points
and . These filters are used for generating the probabilities
for dropping, redirecting or allowing incoming flows. These
probabilities are then used for building the various components
based on equations (7, 8, 9) which together yield to the payoff
for the attacker. Arbitrary weights for each of the components
are then used to model this simulation as a real world scenario.

To represent our findings in a three-dimensional figure, we
introduce a relation of between the two mid-points of the filters
 and such that . Hence the defender is only
required to adjust one value, which is in our case.

As an example, let us consider one scenario where the
attacker‟s and the defender‟s weight coefficients are the same

(

 ,

 ,

 and

), i.e.,
 (as a zero-sum game). Fig. 5 illustrates the attacker‟s
payoff for different number of attack flows , and different
values of threshold with

 . We observe a set of
saddle points in Fig. 4 which represents the Nash equilibrium.
This relates to Nash equilbirum since either player which tries
to deviate from the same, receives a lower or equal payoff.

One such point we observe is which is a
Nash equilibirum point. This point signifies the optimal value
of the firewall mid-point: , the number of flows per

attacker: and the payoff obtained by the attacker:
 . It can be observed (by definition of a Nash
equilibrium) that either player which deviates from the above
mentioned strategy receives a lower or equal payoff. We verify
the existence of such saddle points using a contour plot which
is shown in Fig. 4 under the mesh surface. A contour plot is
illustrated with contour lines. We know that a contour line of a
function of two variables is a line along which the function
remains constant. Fig. 4 shows the contour plot for the
variables and beneath the mesh.

The region between the pair of lines closest to the circular
contour on its right represent the Nash equilibrium region. As
the number of contour lines used to represent the mesh are
increased, these two lines get closer to a value of .

Figure 4. Attacker's payoff for different number of attack flows per
node and different values of threshold . One of the saddle points which also

represents the Nash equilibrium is observed at .

VI. FUTURE WORK

This section provides a brief overview of our defense
architecture which is currently in progress. The network
topology as illustrated in Fig. 1 is setup using DETERlab.

Fig. 5 below shows our GIDA Module in detail. This
implementation of the GIDA Module primarily consists of the
following components: a Game Decision Agent, an Intrusion
Detection System (IDS), a firewall and a routing module. As
nodes upload TCP data streams to the Intended Destination,
which is the Target Server, their flows are analyzed by the IDS.
We use BRO which is an open source Network Intrusion
Detection System (NIDS) for this purpose.

As an incoming flow is analyzed, we extract the following
information: source and destination IP addresses/ports, starting
time and duration of the flow, and amount of bits transferred so
far. The bit-rate of the flow is then computed at regular
intervals by sampling the bits transferred over these intervals.
This information is then used by the Game Decision Agent to
compute the thresholds for the permissible bit-rates for each
flow. Decision to drop, redirect or allow the flows are
determined by comparing the current bit-rate of flows with the
permissible threshold which is computed by the Game

0

500

1000

0

50

100
-100

-50

0

50

Firewall Midpoint (E
2
)

of Attack Flows

Per Node (u)

A
tt

a
c
k
e
r'
s
 P

a
y
o
ff

 (
V
a
)

Decision Agent. Redirection to honeypot is achieved using the
Routing Module. We implement this redirection using Click
Modular Router.

With respect to the game decision analysis, we intend to
consider the existence of multiple equilibria in various
scenarios. We plan to extend our simulation to incorporate a

normal distribution for selecting the sending rate of a legitimate
flow. We aim to utilize our prior work in analyzing imperfect
information games [14] to study the impact of imperfectness in
the sensors of an intrusion detection system. Furthermore, we
plan to simulate a dynamic game where both the attacker and
the defender can alter their strategies during the attack event.

Figure 5. GIDA Module Architecture: The solid and dashed-dot lines represents path followed by legitimate and malicious flows across GIDA Module
respectively. Legitimate flows are allowed to reach the intended destination, whereas malicious flows are either dropped or redirected to a honeypot. The dashed

lines represent the administrator‟s ability to override the actions performed by the GIDA Module.

CONCLUSION

We observe that the domain of game theory provides a
huge potential for addressing cyber security related problems as
it can be leveraged for building a defense architecture which is
placed on a solid analytical setting. We present a game
theoretic model as a defense mechanism against the classic
bandwidth consuming DoS/DDoS attacks on TCP-friendly
flows. Validation of our game theoretic results was performed
via MATLAB simulation.

REFERENCES

[1] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet flow filter to
mitigate ddos flooding attacks. In In Proc of IEEE Symposium on Security and
Privacy, pages 130–143, 2004.

[2] D. Andersen. Mayday: Distributed filtering for internet services. In
Proc. of the 4th Usenix Symposium on Internet Technologies and Systems,
March 2003.

[3] Director of National Intelligence. "Annual threat assessment of the
intelligence community for the senate armed services committee." Statement
for the Record. March 2009.

[4] F. Lau, S. Rubin, M. Smith, and L. Trajkovic. Distributed denial of
service attacks. In IEEE International Conference on Systems, Man, and
Cybernetics, volume 3, 2000.

[5] J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based flow control.
Note sent to end2end-interest mailing list, Jan 1997.

[6] J. Mirkovic. A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39–
53, 2004.

[7] J. Xu and W. Lee. Sustaining availability of web services under
distributed denial of service attacks. IEEE Transactions on Computers, pages
195–208, 2003.

[8] M. Vrable, et al. "Scalability, fidelity, and containment in the potemkin
virtual honeyfarm." ACM SIGOPS Operating Systems Review (ACM New
York, NY, USA) 39 (2005): 148--162.

[9] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. "A model based TCP-
friendly rate control protocol." 1999.

[10] R. Chertov, S. Fahmy, and N. Shroff. Emulation versus simulation: A
case study of TCP-targeted denial of service attacks. In Proc. of the 2nd
International Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities, page 10, 2006.

[11] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu. A
survey of game theory as applied to network security. The 43rd Hawaii
International Conference on System Sciences, 2010.

[12] X. Jiang, and D Xu. "Collapsar: A VM-based architecture for network
attack detention center." Proceedings of the 13th USENIX Security Symposium.
2004. 15--28.

[13] Q. Wu, S. Shiva, S. Roy, C. Ellis, V. Datla, and D. Dasgupta. On
Modeling and Simulation of Game Theory-based Defense Mechanisms against
DoS and DDoS Attacks. 43rd Annual Simulation Symposium (ANSS10), part
of the 2010 Spring Simulation MultiConference, April 11-15, 2010.

[14] Shiva, S., Roy, S., Bedi, H., Dasgupta, D., and Wu, Q. “A Stochastic
Game Model with Imperfect Information in Cyber Security”, The 5th
International Conference on i-Warfare and Security, April 8-9, 2010.

Game Decision

Agent

Intrusion

Detection System

Firewall

Honeypot

Send flow

details
Send

decision

Sniff traffic flow Implement decision

Intended

Destination

Admin Console
(UI for manually

overriding decisions)

Routing Module

Legitimate flow

Malicious flow

Report status Manual Override

decisions

Legend

Legitimate flow

Malicious flow

